1,558 research outputs found

    Temperature effects on the 15-85-micron spectra of olivines and pyroxenes

    Get PDF
    Far-infrared spectra of laboratory silicates are normally obtained at room temperature even though the grains responsible for astronomical silicate emission bands seen at wavelengths >20 micron are likely to be at temperatures below ~150 K. In order to investigate the effect of temperature on silicate spectra, we have obtained absorption spectra of powdered forsterite and olivine, along with two orthoenstatites and diopside clinopyroxene, at 3.5+-0.5 K and at room temperature (295+-2K). To determine the changes in the spectra the resolution must be increased from 1 to 0.25 cm^-1 at both temperatures since a reduction in temperature reduces the phonon density, thereby reducing the width of the infrared peaks. Several bands observed at 295 K split at 3.5 K. At 3.5 K the widths of isolated single bands in olivine, enstatites and diopside are ~ 90% of their 295 K-widths. However, in forsterite the 3.5-K-widths of the 31-, 49- and 69-micron bands are, respectively, 90%, 45% and 31% of their 295 K widths. Due to an increase in phonon energy as the lattice contracts, 3.5-K-singlet peaks occur at shorter wavelengths than do the corresponding 295-K peaks; the magnitude of the wavelength shift increases from \~ 0-0.2 micron at 25 micron to ~0.9 micron at 80 micron. Changes in the relative absorbances of spectral peaks are also observed. The temperature dependence of lambda_pk and bandwidth shows promise as a means to deduce characteristic temperatures of mineralogically distinct grain populations. In addition, the observed changes in band strength with temperature will affect estimates of grain masses and relative mineral abundances inferred using room-temperature laboratory data.Comment: 11 pages, 7 figures including figures 3a and 3b. includes latex and eps files. Accepted by MNRAS on 15th March 200

    Optical properties of silicon carbide for astrophysical applications I. New laboratory infrared reflectance spectra and optical constants

    Full text link
    Silicon Carbide (SiC) optical constants are fundamental inputs for radiative transfer models of astrophysical dust environments. However, previously published values contain errors and do not adequately represent the bulk physical properties of the cubic (beta) SiC polytype usually found around carbon stars. We provide new, uncompromised optical constants for beta- and alpha-SiC derived from single-crystal reflectance spectra and investigate quantitatively whether there is any difference between alpha- and beta-SiC that can be seen in infrared spectra and optical functions. Previous optical constants for SiC do not reflect the true bulk properties, and they are only valid for a narrow grain size range. The new optical constants presented here will allow narrow constraints to be placed on the grain size and shape distribution that dominate in astrophysical environments. In addition, our calculated absorption coefficients are much higher than laboratory measurements, which has an impact on the use of previous data to constrain abundances of these dust grains.Comment: 12 pages; 10 figures; laboratory optical constants available from CDS. Accepted by Astronomy & Astrophysic

    Characteristics of Low-Latitude Coronal Holes near the Maximum of Solar cycle 24

    Get PDF
    We investigate the statistics of 288 low-latitude coronal holes extracted from SDO/AIA-193 filtergrams over the time range 2011/01/01 to 2013/12/31. We analyse the distribution of characteristic coronal hole properties, such as the areas, mean AIA-193 intensities, and mean magnetic field densities, the local distribution of the SDO/AIA-193 intensity and the magnetic field within the coronal holes, and the distribution of magnetic flux tubes in coronal holes. We find that the mean magnetic field density of all coronal holes under study is 3.0 +- 1.6 G, and the percentage of unbalanced magnetic flux is 49 +- 16 %. The mean magnetic field density, the mean unsigned magnetic field density, and the percentage of unbalanced magnetic flux of coronal holes depend strongly pairwise on each other, with correlation coefficients cc > 0.92. Furthermore, we find that the unbalanced magnetic flux of the coronal holes is predominantly concentrated in magnetic flux tubes: 38 % (81 %) of the unbalanced magnetic flux of coronal holes arises from only 1 % (10 %) of the coronal hole area, clustered in magnetic flux tubes with field strengths > 50 G (10 G). The average magnetic field density and the unbalanced magnetic flux derived from the magnetic flux tubes correlate with the mean magnetic field density and the unbalanced magnetic flux of the overall coronal hole (cc > 0.93). These findings give evidence that the overall magnetic characteristics of coronal holes are governed by the characteristics of the magnetic flux tubes.Comment: 15 figure

    Optical constants of silicon carbide for astrophysical applications. II. Extending optical functions from IR to UV using single-crystal absorption spectra

    Get PDF
    Laboratory measurements of unpolarized and polarized absorption spectra of various samples and crystal stuctures of silicon carbide (SiC) are presented from 1200--35,000 cm1^{-1} (λ\lambda \sim 8--0.28 μ\mum) and used to improve the accuracy of optical functions (nn and kk) from the infrared (IR) to the ultraviolet (UV). Comparison with previous λ\lambda \sim 6--20 μ\mum thin-film spectra constrains the thickness of the films and verifies that recent IR reflectivity data provide correct values for kk in the IR region. We extract nn and kk needed for radiative transfer models using a new ``difference method'', which utilizes transmission spectra measured from two SiC single-crystals with different thicknesses. This method is ideal for near-IR to visible regions where absorbance and reflectance are low and can be applied to any material. Comparing our results with previous UV measurements of SiC, we distinguish between chemical and structural effects at high frequency. We find that for all spectral regions, 3C (β\beta-SiC) and the Ec\vec{E}\bot \vec{c} polarization of 6H (a type of α\alpha-SiC) have almost identical optical functions that can be substituted for each other in modeling astronomical environments. Optical functions for Ec\vec{E} \| \vec{c} of 6H SiC have peaks shifted to lower frequency, permitting identification of this structure below λ4μ\lambda \sim4\mum. The onset of strong UV absorption for pure SiC occurs near 0.2 μ\mum, but the presence of impurities redshifts the rise to 0.33 μ\mum. Optical functions are similarly impacted. Such large differences in spectral characteristics due to structural and chemical effects should be observable and provide a means to distinguish chemical variation of SiC dust in space.Comment: 46 pages inc. 8 figures and 2 full tables. Also 6 electronic-only data files. Accepted by Ap

    Switching the Conductance of a Molecular Junction using a Proton Transfer Reaction

    Full text link
    A novel mechanism for switching a molecular junction based on a proton transfer reaction triggered by an external electrostatic field is proposed. As a specific example to demonstrate the feasibility of the mechanism, the tautomers [2,5-(4-hydroxypyridine)] and {2,5-[4(1H)-pyridone]} are considered. Employing a combination of first-principles electronic structure calculations and Landauer transport theory, we show that both tautomers exhibit very different conductance properties and realize the "on" and "off" states of a molecular switch. Moreover, we provide a proof of principle that both forms can be reversibly converted into each other using an external electrostatic field.Comment: 14 pages, 5 figure

    Infrared Spectra of Pyroxenes (Crystalline Chain Silicates) at Room Temperature

    Get PDF
    Pyroxene crystals are common in meteorites but few compositions have been recognized in astronomical environments. We present quantitative room-temperature spectra of 17 Mg-- Fe-- and Ca--bearing ortho- and clinopyroxenes, and a Ca-pyroxenoid in order to discern trends indicative of crystal structure and a wide range of composition. Data are produced using a Diamond Anvil Cell: our band strengths are up to 6 times higher than those measured in KBr or polyethylene dispersions, which include variations in path length (from grain size) and surface reflections that are not addressed in data processing. Pyroxenes have varied spectra: only two bands, at 10.22~μ\mum and 15.34~μ\mum in enstatite (En99_{99}), are common to all. Peak-wavelengths generally increase as Mg is replaced by Ca or Fe. However, two bands in MgFe-pyroxenes shift to shorter wavelengths as the Fe component increases from 0 to 60 per cent. A high-intensity band shifts from 11.6~μ\mum to 11.2~μ\mum and remains at 11.2~μ\mum as Fe increases to 100~per~cent; it resembles an astronomical feature normally identified with olivine or forsterite. The distinctive pyroxene bands between 13~ and 16~μ\mum show promise for their identification in MIRI spectra obtained with JWST. The many pyroxene bands between 40 and 80~μ\mum could be diagnositic of silicate mineralogy if data were obtained with the proposed SPICA telescope. Our data indicate that comparison between room-temperature laboratory bands for enstatite and cold 10K\sim 10-K astronomical dust features at wavelengths 28 μ\gtrsim 28~\mum can result in the identification of (Mg,Fe)- pyroxenes that contain 7--15 % less Fe-- than their true values because some temperature shifts mimic some compositional shifts. Therefore some astronomical silicates may contain more Fe, and less Mg, than previously thought.Comment: 16 pages, 10 figures.accepted in MNRA
    corecore